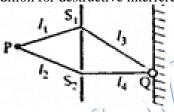


DPP – 2 (Wave Optics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/96

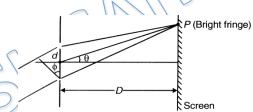

Video Solution on YouTube:-

https://youtu.be/7AM7-YXYfYE

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/47

Q 1. Two identical narrow slits S_1 and S_2 are illuminated by light of wavelength λ from a point source P. If, as shown in the diagram above the light is then allowed to fall on a screen, and if n is a positive integer the condition for destructive interference at Q is that


(a)
$$(l_1 - l_2) = (2n + 1)\lambda/2$$

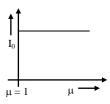
(b)
$$(l_3 - l_4) - (2n + 1) \lambda/2$$

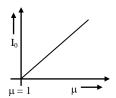
(c)
$$(l_1 + l_2) - (l_2 + l_4) = n\lambda$$

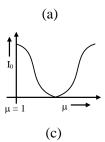
(d)
$$(l_1 + l_3) - (l_2 + l_4) = (2n + 1)\lambda/2$$

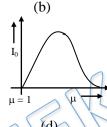
Q 2. For maxima (bright fringe) at point P, relation between given quantities is (angles shown in figure are not small)

- (a) $|d \sin \phi d \sin \theta| = (2n-1) \lambda/2$
- (b) $|d \sin \phi| d \sin \theta| = n\lambda$
- (c) $|d \sin \phi| d \sin \theta| = (2n-1) \lambda/4$
- (d) None of these
- Q 3. Two coherent point sources s_1 and s_2 vibrating in phase emit light of wavelength λ . The separation between the sources is 2λ . The smallest distance from s_2 on a line passing through s_2 and perpendicular to s_1s_2 where a minimum of intensity occurs is:
 - (a) $\frac{7\lambda}{12}$
- (b) $\frac{15\lambda}{4}$
- $(c)\frac{\lambda}{2}$
- (d) $\frac{3\lambda}{4}$
- Q 4. White light is used to illuminate the two slits in Young's double slit experiment. The separation between the slits is b and the screen is at a distance d (>> b) from the slits. At a point on the screen directly in front of one of the slits, certain wavelengths are missing. Some of these missing wavelengths are:
 - (a) $X = b^2/d$
- (b) $\lambda = 2b^2/d$
- (c) $\lambda = b^2/3d$
- (d) $\lambda = 2b^2/3d$

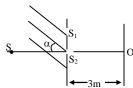

hysicsaholics



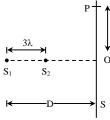

- In a Biprism experiment, if the wavelength of red light used is 6.5×10^{-7} m and that of green Q 5. is 5.2×10^{-7} m, the value of n for which (n + 1)th green bright band coincides with the nth red bright band for the same setting is given by -
 - (a) 2


- (b) 3

- Q 6. In a YDSE experiment if a slab whose refractive index can be varied is placed in front of one of the slits then the variation of resultant intensity at mid-point of screen with '\mu' will be best represented by $(\mu \ge 1)$. [Assume slits of equal width and there is no absorption by slab]



- Q 7. If white light is used in a Young's double-slit experiment -
 - (a) bright white fringe is formed at the centre of the screen
 - (b) fringes of different colours are observed clearly only in the first order
 - (c) the first-order violet fringes are closer to the centre of the screen than the first order red
 - (d) the first-order red fringes are closer to the centre of the screen than the first order violet fringes
- A parallel beam of light ($\lambda = 5000 \text{ Å}$) is incident at an angle $\alpha = 30^{\circ}$ with the normal to the Q 8. slit plane in a young's double slit experiment. Assume that the intensity due to each slit at any point on the screen is I_0 . Point O is equidistant from $S_1 \& S_2$. The distance between slits is 1mm.



- (a) the intensity at O is $4I_0$
- (b) the intensity at O is zero
- (c) the intensity at a point on the screen 4m from O is 4I₀
- (d) the intensity at a point on the screen 4m from O is zero
- Q 9. Two coherent narrow slits S_1 and S_2 emitting light of wavelength λ in the same phase are placed parallel to each other at a small separation of 3\(\lambda\). The light is collected on a screen S which is placed at a distance D (>> λ) from the slit S₁ and shown in figure. Find the distance x such that the intensity at point P is equal to the intensity at O.


hysicsaholics

- (a) $\frac{D\sqrt{5}}{2}$ (c) $\frac{D\sqrt{3}}{2}$

- Q 10. To make the central fringe at the centre O, a mica sheet of refractive index 1.5 is introduced. Choose the correct statements (s).

- (a) The thickness of sheet is $2(\sqrt{2} 1)d$ infront of S_1 .
- (b) The thickness of sheet is $(\sqrt{2} 1)d$ infront of S_2 .
- (c) The thickness of sheet is $2\sqrt{2}$ d infront of S_1 . (d) The thickness of sheet is $(2\sqrt{2}-1)$ d infront of S_1
- Q 11. If one of the slits of a standard YDSE apparatus is covered by a thin parallel sided glass slab so that it transmit only one half of the light intensity of the other, then:
 - (a) the fringe pattern will get shifted towards the covered slit.
 - (b) the fringe pattern will get shifted away from the covered slit.
 - (c) the bright fringes will be less bright and the dark ones will be more bright.
 - (d) the fringe width will remain unchanged

Answer Key

Q.1 d	Q.2 b	Q.3 a	Q.4 a,c	Q.5 c
Q.6 c	Q.7 a,b,c	Q.8 a, c	Q.9 a	Q.10 a

Q.11 a,c,d